
1.0  Description of the Smart Sampling Methodology

Smart Sampling couples economic decision analysis with geostatistics to guide site character-
ization and remediation efforts.  The process begins with an initial set of data, collected during
site characterization, which indicate the need for remediation.  These data are used to design an
initial excavation plan based on a map describing the likelihood or probability that the contam-
inant concentration exceeds an specified threshold (for example, define the excavation area such
that the probability of exceeding the threshold after excavation is 5% or less).

Prior to implementing the initial excavation plan, a cost analysis is performed to determine the
potential value of collecting additional data.  The objective is to minimize the total project cost,
CTOTAL, defined as

CTOTAL = ji  [CSAMPLING + CREMEDIATION +  CFAILURE  ]i   +   CDESIGN 

for all remediation units i = 1,n.

CSAMPLING includes the cost of collecting, handling and obtaining the laboratory analytical results
for the samples.

CREMEDIATION may include excavation, transportation and treatment or disposal costs.

CFAILURE is the cost associated with leaving behind contamination exceeding the regulatory com-
pliance threshold.  This may include the cost of bringing the equipment back to the site to
remediate these areas, the cost of the additional remediation and verification sampling, and,
possibly, fines (e.g., levied by the regulatory agency for negligence).

CDESIGN is the cost of designing the remediation plan based on the sampling results (whether
performed in the classical manner, e.g., via hand contouring the concentration distribution, or
using the Smart Sampling approach of geostatistical simulation, there is a cost associated with this
phase of the remediation effort).

The advantage of the Smart Sampling approach is its ability to identify areas where the expected
cost of failure is greater than the cost of taking additional samples.  Smart Sampling techniques
are used to not only identify these areas, but to determine the number and optimal locations within
these areas where additional samples should be taken.

If additional samples are taken, the probability of exceedence map is revised, a new excavation
plan is developed and the remediation costs are recomputed.  This procedure is repeated
(theoretically) until there is no significant potential reduction in the total cost.  At this point, the
last (final) remediation map is used as the design for the excavation.  In practice, probably at
most, only one additional sampling event would be carried out.

The primary component of the Smart Sampling methodology involves a technique called
geostatistical simulation.  Geostatistics is the study of data that exhibit spatial correlation.  It is
well known among earth scientists, that samples of contaminants, sediments, porosity, etc. tend to
be more similar when the samples are closely spaced and less similar as the distance between the
sample locations increases.  Geostatistics provides a means of quantifying this spatial correlation



and also provides adaptations to classical regression techniques to take advantage of spatial
correlation (Isaaks and Srivastava, 1989).

1.1  Variogram Estimation and Modeling

At the heart of geostatistical analysis is the measurement and modeling of the degree and type of
spatial correlation.  These operations are generally accomplished through the calculation of an
experimental variogram and then the fitting of a model to that calculated variogram.  The
variogram is essentially a model of the increase in variability between sample locations as the
distance between the samples increases.  Although the terms variogram and semivariogram are
often used interchangeably, the models of spatial variability used in the analyses are actually
semivariograms, defined as

γ (x, h)  =  ½  ΕΕ [( Ζ (x) - Ζ (x-h)) 2 ]

where E denotes expectation, Z is the variable of interest (e.g., Pu238 concentration), x is the
spatial location and h is the separation vector.  The variogram equation is similar to the
calculation of variance in classical statistics.  In the calculation of variance, the mean is subtracted
from each data point (each Ζ(x)), the differences are squared and then summed.  In the variogram
equation, the difference is taken between each data point and a data point a distance (h) away, the
differences are squared and then summed.  Thus, it measures the “variance of the differences”
between field variables separated by a distance (h).  It makes sense then, that the variogram value
should be small for samples which are in close proximity and larger for samples further apart.

Variogram estimates typically exhibit somewhat ‘erratic’ behavior, i.e., empirical estimates are
non-unique and exhibit a lot of scatter.  Consequently, a smooth, analytical model is usually fit
through the estimates as shown in Figure 1.

Figure 1 - Example of experimental semivariograms (points)
overlain by analytical model (curve)



The variogram model is used to characterize spatial variability, or the manner in which field
variables change from point to point in space.  There are several important features to a variogram
model. The “range” is the distance at which the variogram model becomes parallel with the x-axis
(where the variables become completely uncorrelated).   Often the term “correlation scale” is used
to describe the distance over which the field variables are ‘significantly’ correlated.  This is
typically the distance represented by a parameter of the variogram model which results in the
model reaching the “sill” value.  The sill is the value of the variogram at the range distance.
Theoretically, the value of the sill is equal to the variance of the data set.  Intuitively, as the
distance between sample locations decreases to zero, the amount of variability between samples
should also decrease to zero.  Often, variogram models do not go through the origin of the graph.
In these cases, the variogram model y-intercept is known as the “nugget” value.  The nugget
effect generally represents sampling variability at a scale smaller than the smallest sample spacing
and may also represent lack of precision in the measurements, or sampling error.

Variogram modeling is a fundamental component of geostatistical estimation and simulation
techniques.  Estimation is a linear interpolation technique which provides the “best estimate” in
the minimum variance sense (i.e., it is developed by minimizing the variance between estimated
and true values).  Simulation, on the other hand, is designed to reproduce the variability in the
sample data, while honoring the measured values.  Both techniques are used to assign property
values to unsampled locations within the site domain.

1.2   Random Field Estimation and Simulation

In the geostatistical approach, the variable of interest (e.g., contaminant concentration) is
considered to be a spatial stochastic process, or random field.  Estimation techniques are used to
derive estimates of the variable at unsampled locations.  Estimation techniques commonly used in
the earth sciences include inverse distance-squared techniques, nearest neighbor polygons and
kriging.  All of these techniques can be classified as methods of interpolation, i.e., they all produce
estimates of unknown concentrations at unsampled locations by interpolating from known values
at other locations.

Of the three estimation techniques mentioned, only kriging exploits the model of spatial
correlation derived through variogram modeling.  Kriging is essentially the process of determining
the expected value of concentration at a given location by calculating a weighted least-squares
mean of the surrounding data points.  The weights used in the least-squares estimation are
calculated by using the model of spatial correlation given by the variogram.  These weights
account for the distance each data point is away from the location being estimated and the
clustering of the data points (for example, a number of points all close to each other provide
redundant information concerning concentration at the point being estimated and are weighted
less than a single point an equal distance away in another direction).  Because kriging is a
minimum variance-based estimation technique, the concentration map derived from kriging will
contain less variability than the actual sample data.  This smoothing effect will ensure that the
minimum and maximum values of the estimated map do not fall outside the bounds of the



minimum and maximum of the sample data.  A kriged estimate of concentration along a transect
would look very similar to the best guess drawn by hand.

Whereas estimation provides a single best estimate of the concentration at each location,
simulation provides multiple estimates of the concentration field, all of which honor the available
data.  As noted previously, simulation is designed to reproduce the measured level of variability in
the sample data for each map of the concentration field while honoring the measured data at their
respective locations.  Each equiprobable map of the contaminant distribution generated via
simulation is termed a ‘realization’.  Based on the limited samples available, it is not possible to
determine the exact underlying reality.  Therefore, any one of the realizations are as equally
plausible as any other.  These multiple plausible renditions of the contamination distribution
provide a means by which uncertainty in the contamination maps can be addressed.  Specifically,
the probability of exceeding a specified concentration level at any location can be estimated.

This is accomplished by, at each location, collecting all the estimated values of concentration
across all realizations and developing a complementary cumulative distribution function (CCDF)
from the ensemble of values.  This concept is illustrated schematically in Figure 2.

The kriged or simulated realizations can be processed to estimate the total amount of contaminant
across the site.  This calculation is accomplished by assuming that each measurement of
concentration is representative of a volume or block of soil.  Consequently, the kriged or
simulated concentrations are also representative of the same volume of soil.  For the purpose of

Figure 2 - Schematic of Complimentary Cumulative Distribution Function (CCDF)
construction from an ensemble of concentration maps



estimating the total amount of contaminant in a block, the contaminant is assumed to be evenly
distributed throughout the block.  The size of the blocks must be chosen with some consideration
for the correlation scale of the process, i.e., the blocks should be sufficiently small to adequately
represent the variability expressed by the variogram model, say, about 1/5th the range.

4.3  Choosing the Number of Simulations

One question that must be considered is how many realizations are required to adequately
characterize the probability distribution (pdf) of contaminant concentrations (across all
realizations) at each location.  If the number of realizations is too few, the pdfs will not be
meaningful, and it is unlikely that the appropriate remediation decision will be made (to remediate
or not to remediate at each location).

The concept of a representative elementary volume (REV) discussed in ground water hydrology
literature (Bear, 1972) can be used to illustrate how this question might be addressed.  In the field
of ground water hydrology, an REV is a volume of the porous media that is large enough to
average out any discrete local effects of heterogeneity in the media, but small enough to not be
affected by deterministic trends in the distribution of the property.  A classic example of an REV
is given by measuring porosity in a sandstone with a larger and larger sample.  At the smallest
sample size the porosity will be either 0.0 or 1.0 depending on whether or not the sampler
encounters a sand grain or a void space.  As the size of the sample increases, the fluctuations in
the porosity value will diminish as the sampler begins to sample a representative volume (REV) of
the porous media.

The REV concept can be applied to analyzing geostatistical simulations by noting that, at the basis
of geostatistics, the ergodic hypothesis allows for the replacement of a spatially infinite sample by
a large number of spatially finite, stochastically generated images.  While this hypothesis is a basic
tenet of geostatistics, the practical question of "what is large?" or at least “large enough” remains
to be answered.  In order to answer this question, the spatial averaging of the REV in ground
water hydrology is replaced by a running average of the concentration (at selected locations)
across an ever increasing number of realizations (see Figure 3, below).  The calculated statistic is
no longer a REV, but is now termed the representative number of realizations (RNR).  If the
average value stabilizes to a constant, representative value, then the number of realizations is
deemed to be large enough.

The locations where the stability in the mean is to be evaluated are chosen with respect to the
conditioning data.  Generally, one should choose locations where kriging variance is high, i.e.,
where the distance from conditioning points is largest and, consequently, where the uncertainty is
greatest.  If stability at these locations is achieved, this provides assurance that at all other
locations similar or better convergence will be observed.  Within these areas, it may be advisable
to select several points which cover the full range of concentrations, say low, midway and high
concentration values.  Additionally, one can plot the stability in the second moment, or the
variance, of the distributions at these locations; for this statistic to become completely stabilized, a
larger number of simulations will be required.



4.4   Probability and Remediation Mapping

Probability mapping is defined here as the use of geostatistical simulation to estimate the
probability of exceeding a specified level of a contaminant concentration at each location in the
simulation domain.  For example, suppose 100 realizations of a contaminant distribution are
generated.  If the action level is 25 pCi/g and 30 of the 100 realizations show concentrations
greater than 25 at a given location, the probability of exceeding the action level at that location is
0.30, or 30%.  The mean value at each location is the estimate derived from kriging.

Thus, probability maps can be generated by choosing an action level and determining, for each
location in the simulation domain, the probability of exceeding that action level as described
above.  The resulting map could be contoured and areas having higher probabilities would be
targeted for further sampling and remediation.

Once the probability map is generated, the ‘risk tolerance level’ is used to develop the remedial
action plan.  For example, if the regulating agency stipulates that no more than 5% of the samples
shall exceed the target action level, then all “remediation units” (simulation blocks where the
exceedence probability is estimated) exceeding 5% will be slated for remediation.

The remediation design could be developed as, for example, a green and red color map where red
means yes, excavate and green means no, do not excavate.  Superimposed on this map would be
the grid lines from the sampling grid, as a means of ‘registering’ or orienting the remediation map.
Additionally, the required depth of excavation can be printed in the center of each cell on the

Figure 3 - Example of the convergence of the mean of the
probability distribution of contaminant concentrations with

increasing number of realizations



remediation map.  Such remediation maps can be produced for each 50' canal section on a single
8½ ×11 page, so it can be used directly in the field.

4.5  Cost Versus Risk Decision Curves

Determining an ‘acceptable’ level of risk may depend, to some degree, on the cost consequences
of reducing the risks.  For example, if the regulatory agency and/or stakeholders are highly risk
averse, then the only solution may be to remediate the entire site, possibly to an excessive degree,
in order to ensure that all areas have a large margin of safety.  On the other hand, the concept of
cost-effective remediation is predicated on the realization that some finite level of risk must be
accepted.   

In order to aid the decision makers in this process, a set of cost versus risk curves can be
developed from the remediation maps.  Several different remediation maps can be developed, each
with a different level of risk associated with it.  By plotting the total remediation against its
corresponding risk level, a curve can be developed showing the cost versus risk relationship.
Several of these curves can then be generated, each for a different action level.

Examples of such curves are shown in Figure 4.  These curves present an effective way to display
the relationship between cost and the probability of remediation failure.  These curves can also
provide a focal point for discussion between the site owners, regulators and stakeholders
concerning action levels, costs and risks associated with various future land-use scenarios.

Figure 4 - Example of cost versus risk (probability of failure) curves.



4.6  Determining the Worth of Additional Sampling

Prior to finalizing the remediation design based on the samples collected and the probability maps
generated, it is prudent to determine if acquisition of additional samples is likely to further reduce
the total remediation costs.  The key, as noted in Section 3, is identifying if there are any areas
where the expected cost of failure is greater than the cost of taking additional samples.  This
expected cost of failure, E[Cfaili], is defined as

E[Cfaili],  =  Pfaili × Cfaili

where Pfaili is the probability of failure in remediation unit “i” and Cfaili is the cost of failure for
that remediation unit (a remediation unit is a simulation gridblock).  The cost associated with
failure to achieve the required remedial action level includes the cost of bringing the equipment
back to the site, excavating the area, transportation, treatment or disposal, and the cost of
performing final verification sampling.  It could, potentially, also include the cost of fines levied by
the regulatory agency.  The probability of failure is determined from the probability maps
generated through geostatistical simulation and the action level being considered.

Thus, the expected cost of failure can be evaluated for zero, one, two ... up to N potential
additional samples.  Correspondingly, the cost of taking these additional samples can also be
evaluated, and will likely be a linear function of the number of samples, being generally a fixed
cost per sample. (Insert discussion about simulating the outcome and reestimating the excavation
area as in the James and Gorelick paper.).  Such a graph can be a valuable decision tool for the
site operator by providing a defensible means of making cost-effective decisions about the
remediation efforts as they are taking place.  In the next section, we describe how these potential
additional sampling locations can be determined.

4.7  Determining the Locations and Quantity of Additional Samples

The placement of additional samples should be optimized such that the information concerning a
remediation decision is maximized.  A number of techniques have been proposed for optimal
location of future samples (Burgess, et al., 1981; Englund and Heravi, 1994; Kyriakidis, 1996)
with reduction of kriging variance being the most popular (see Barnes, 1989 and Olea, 1984 for a
review of kriging variances as a means of sample optimization).

In the past few years, decision-based sample optimization has proven to be superior to kriging
variance for locating in-fill samples.  This result is not surprising given that kriging variance is
based solely on the data locations, not on the data values.  By incorporating the data values of the
initial sampling into the optimization through consideration of the action level, the amount of
information gained by the additional samples can be maximized.

Several techniques have been proposed for incorporating the action level into optimizing the
placement of additional samples.  The first technique is an intuitive approach suggested by
Rautman et al. (1994) that simply targets the locations with median probability of exceeding the



action level (probabilities near 0.5).  This approach is termed the "median probability" (MP)
technique.

Another approach involves targeting the locations with median probability of exceedence and also
accounting for the variability between simulations at those locations.  One variant of this approach
is implemented in the OPTMAS program (Knowlton, et al., 1995) where a single additional
sample is located along the median probability of exceedence contour line at the location of the
highest simulation standard deviation.  An extension of this approach is the "weighted standard
deviation" (WSD) technique.  Here, the simulation standard deviation at any location is multiplied
by a weight between 0.0 and 1.0.  The weight is a function of the probability of exceeding the
action level.  For locations with a probability of exceedence equal to 0.5, the weight is 1.0.  The
value of the weight tails off to 0.0 as the probability of failure approaches both 0.0 and 1.0.

A third technique is the "reference uncertainty" (RU) technique defined as

R(x) = ( C0.75 - C0.25 ) / ( 1 + | C0.5 - CAL | )

where C is concentration, the subscripts indicate the quantile of the distribution at location x, and
AL is the action level.  The reference uncertainty value will increase both as the variability of the
simulated concentrations at a location increases and as the difference between the simulated
values and the action level decreases. The idea behind a reference uncertainty is presented in
Kyriakidis (1996), where it was used to determine the remediation panels with the greatest
uncertainty of exceeding the action level.  These three techniques all incorporate the action level
into determining locations for additional sampling.

All of the techniques discussed for determining the optimal locations of additional samples
produce a continuous distribution of values from 1 to N, where N is equal to the number
remediation “panels” in the simulation grid (i.e., the number of simulated grid blocks).  The
locations within the simulation grid can then be ranked from the maximum (1) to the minimum
(N) value of the uncertainty measure.  The locations of additional samples are then typically
chosen based on the ranks computed for each location.

In previous applications of the Smart Sampling methodology the locations of follow-up samples
were determined strictly on the rank of each uncertainty measure at a location without considering
the proximity of other potential follow-up samples.  It is important to consider the locations of
potential follow-up samples relative to each other because many are likely to be found in close
proximity. For example, if the locations with the three highest ranks for additional sampling are all
next to each other, then obtaining a sample at the location with the highest rank will also provide
information on the other two potential sample locations, decreasing the uncertainty at all three
locations; it would not be necessary or cost effective to collect additional samples at the other two
locations.  Consideration of the proximity as well as the rank among potential follow up samples
will ensure the most effective spread of additional sampling locations across the domain.

One possibility for optimizing the amount of information provided by the ensemble of potential
additional samples is to conduct a second ranking process which takes into account the proximity



of the next potential sampling location to all previously chosen (higher-ranked) locations.   For
example, the location with the highest RU is the first potential additional sample location.  The
next highest RU value in the simulated grid may be very close to the first one.  In this case, say if
the distance between the two potential sampling locations is less than the correlation scale of the
process, skip this location and go on to the next highest RU value and continue until a high RU
value is found outside the “correlation range” of all previously selected potential sample locations.
Repetition of this process will result in a matrix similar to the uncertainty ranking matrix,
representing the preferential order for selecting additional samples that takes into account the
correlation among the sample values.

After the ordering of potential additional samples is determined, the expected cost of remediation
failure at each of these locations can be computed and cumulated so the cost versus probability of
failure curves can be generated as described in Section 4.6 above.


